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Scaling in steady-state aggregation with injection
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A mean-field approach for steady-state aggregation with injection is presented. It is shown that for a wide
variety of aggregation processes the resulting steady-size distribution obeys a powefntw m~ < with
a=(3+B)/2 andB the degree of homogeneity of the coagulation kernel. The general conditions for this to
happen are obtained. Some applications are studied. In particular, it predicts a potential behavior for coagula-
tion in atmospheric aerosols with exponent 2, in agreement with observations. The theoretical results also
agree with some animal group-size distributions and with numerical simulations in fractal aggregates.
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. INTRODUCTION +j Y3 (iY+ )13 for Brownian coagulation in a continuum
regime[21].

Power-law distributions are widely observed in natural Let us stress that stationary aggregation with injection
and social system$l]. Understanding the origin of this bears a great fundamental importance since if these distribu-
abundance is a question of great interest that can providéons are typically scaling laws, as some particular cases have
valuable information about the origins of complexity. This shown[18,19, we would be dealing with a very general
guestion has deserved the attention of many researchers dumechanism generating power-law distributions and it should
ing the last decades and several mechanisms have been ke added to the ones listed above. In fact, these processes
ported to provide scaling laws such as intermittef@ly co-  bear some resemblance with the ones leading to self-
herent noise [3], self-organized criticality [4], or  organized criticality: in both the cases, the system is set far
multiplicative processes arising from systems with interactfrom equilibrium by an injection mechanism; in ours, how-
ing units with complex internal structufé]. ever, the dynamics lead the system to a stable nonequilib-

The type of processes we are dealing with in this paperium state and not to an unstable one.
belongs to the general class of cluster-cluster aggregation Stationary coagulation with injection is also interesting
(CCA) where clusters as well as single particles diffuse andor practical purposes and is expected to play a relevant role
eventually get stick when they meet. These processes aie ecological and social systems. Let us mention some ex-
widespread in physical and biological systems such as, foamples where the steady-state coagulation plus injection may
instance, coagulation of colloids and aerod@§ polymer-  apply. One of special importance is the study of atmospheric
ization [7], cluster formation of galaxief8], red-blood-cell aerosols: particles are continuously generated by natural or
aggregation 9], or plankton ecology10]. Much work has artificial meanglike smokes ejected by cars, industries etc.
been done in the study of these aggregation processes. Baspagulate and big particles leave the system through sedi-
cally, it has been addressed to two areas: the structure of theentation. A long standing problem is why size-distribution
aggregates, which in many cases are fradthls12 and the  measurements provide potential laws witk-2 in continen-
kinetics of aggregation, experimentally and theoretically, eital air and urban polluted afi22] and also, in the study of
ther by calculating the explicit time-dependent distributionstirred tank reactors for aerosols, used for modeling chemical
functions or mostly its scaling behavior both analytically andreactors in industryin this case, large particles are allowed
through numerical simulatior42,13. to flow out from the chambgr Recently, a similar steady

Although many of these works correspond to nonstationaggregation dynamics has been successfully applied to the
ary situations, stationary ones have also been extensiveljescription of the size distribution in plankt¢hO], and has
considered. On one hand, steady aggregation plus breakuglso been introduced in the study of animal group-size dis-
the so-called reversible aggregation, has been studied Hyibutions [23]. The three-dimensional turbulence has also
means of numerical simulations and theoretical analysibeen suggested to have a deep relation to the steady state of
[14,15 showing that for many coagulation and fragmenta-aggregation with injectiof18].
tion kernels, the size distribution of clusters obeys a power By using a mean-field approach, we find in this paper the
law. In stationary aggregation with injection and sinks, someconditions for steady aggregation with injection to yield
scaling laws relating the time to reach the stationary stat@ower-law distributions for general homogeneous coagula-
and the total number of clusters have been derived theorettion kernels and show that, if satisfied, the corresponding
cally [16] and confirmed by numerical simulatioid7].  scaling exponent isv=(3+ B)/2 with 8 the homogeneity
With respect to the steady-size distribution, however, thelegree of the kernel. Since the critical dimension for these
theoretical results have focused in uniform coagulation kerprocesses seems to the=2 [17,24], the results of our analy-
nels, either considering spatial correlations or by usingsis may have a broad applicability.
mean-field approachg48], and kernels of the typb(i,j) The plan of the paper is as follows. In Sec. Il the mean-
~i*"+i”j* [19,20. However, most physically relevant field approach is shown, and Section IIl presents some ap-
ones are more complex such as, for instamge,j)~(i ~¥®  plications.
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Il. MEAN-FIELD APPROACH . 1
o , mszz“”ﬁf dxb(1x)xt™« for m>my, (3)
In order to evaluate the steady distribution function of an 0
aggregation process with sources and sinks, one should, in

principle, solve the Smoluchowski equation for coagulation w
in the steady statg25], pmszl_”ﬁJl dxb(1x)x ¢ for m<m*. (4)
1 . . .
0=a,+ 3 iHE:k bijNiNj—Nk; byiN; — N, The introduction of Eqs(3) and(4) into Eqg. (2) leads, after

some direct calculations, to the following equation &ar

k=1.2,..., (1)
a—B—-3_ —«a

whereN, denotes the number of clustersloparticles,a, is (2=2a+p) L dyb(1y)y* 3= L dxb(1x)x
the injection rate ok clustersp;; the coagulation kernel, and
Cx the.removal probab|llty of a cluster of sikeIn the cases \hose solution is simply
analytically solved, the sink term, often leads to an expo-
nential decay at largé&k after a potential dependence at 3+
smaller one$19,23; it is also seen that the exponent in the a=——0o
potential subrange does not dependogn In what follows, 2
we will consider either that only clusters of size bigger than
a critical one are eliminated or that no sink term exist. In theprovided integral/Tdxb(1x)x™« does exist. Ifb(1x) is a
presence of more complicateg, we expect an exponential continuous function andb(1x)~x? for x—c, as usually
decay superimposed to the solutions found in its absencéappens in physical situations, the convergence condition re-
For simplicity, we assume a monodisperse source of singl@rites asa>1+y or

®)

particles.
Solving the Smoluchowski equation is not easy, and the 1+
attempts to do it have only succeded for particular coagula- 7<_2 : (6)

tion kernels[19]. Instead, we take a different point of view
and consider a continuum version of the aggregation process
in which clusters grow when they meet smaller ones an%
“die” when the cluster they meet is a greater one. Both
approaches should agree for large cluster skze&/ith this
viewpoint, one may write the following balance equation un-
der stationary situations:

Therefore, in aggregation processes with injection of
ingle particles, if Eq(6) satisfies, at stationary situations the
size distribution is a power law with an exponent given by
Eg. (5). One can confirm the validity of this result by com-
parison with observational data, numerical simulations, and
solutions of the Smoluchowski equation.

We have performed numerical simulations to test the size
range for which the scaling solution holds. In the simula-
tions, we use cellular automata that emulate the aggregation
process. Since they do not include space, they directly supply
N(m) being the continuous-size distributiam, the mass of ~Mean-field solutions. The results are obtained by adding the
single particles, anan and pm the growth and death rates solutions every given time '”tef"a' once thg steady state has
due to coagulation, respectivelyhe generalization to non- been r_eached. In Fig. 1, the size distributions for some ag-
stationary situations and the inclusion of sink and Sourc‘gregatlon processes are displayed. One observes that the re-

terms is trivia). At m=m,. one must add a source term in sults fit well with the potential laws from small to big sizes.
Eq. (2). The Iat.ter rates zg;e expressed by On the other hand, by solving the Smoluchowski equation

for the kerneb(i,j)~i#j”+i"j*, Hayakawa found a power-
law distribution for asymptotic large (or k) with exponent

d(Nm)
am =—Np,, for m>mg, (2

m= mdmlb(m,ml)N(ml)ml,pm a=(3+u+v)/2, under conditionu—v|<1 [19]. These
Mo are precisely the results predicted by E@8.and(6). Let us
. point out that the present method, apart from being math-
= fm dmyb(m,m;)N(m;) ematically simpler than Hayakawa's, does not need to deal
m separately with gelating and nongelating cases. Obviously,

for the constant kernel, E@5) suppliesa=3/2, as obtained

with m* being either the critical cluster mass over which through different methods.
clusters are removed or infinity if there are no sinks. Finally, let us mention that Eq(5) is also found by

Let us consider that the coagulation kernel is a homoge€ueille and Sirg[20]. Curiously, in their derivation, com-
neous function of degre@, i.e., b(\i,\j)=A?b(i,j), as pletely different from ours, they do not include any restric-
corresponds to most physical situatidd®], and search for tion in the values of the parametegsand g for the power
solutions of Eq(2) of the typeN(m)=Cm™ ¢ with Ca nor-  solution to hold, restrictions that do appear in Hayakawa’'s
malization factor. Straightforward calculations give deduction.
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convection is considered, might also be included; it yields an
exponent 1.5, smaller than 2 but close to some atmospheric
observations. Therefore, one may conclude that the main co-
agulation processes in atmospheric aerosols yield potential
laws with exponents~2, in good agreement with observa-
tional evidence.

The Brownian kernel in a continuum regime may also
give a plausible description of aggregation of some animals
into groups. Observational data for free swimming tuna fish
provide an exponent 1.49 before an exponential decay
[23,27. For sardinellas and African buffalos, the exponents
found are, respectively, 0.95 and 1.[Z8], smaller than the
mean-field value 1.5. The reason for this might be, as sug-
gested by Bonabeast al. that the aggregation process in

—_

0

102 100 10* 10
mass m

10° 10 these cases takes place in an effective dimension lower than
two, below the critical dimension over which the mean-field

FIG. 1. Mass distribution of clusteld(m) versus mass. Simu- theory gives right results. More work should be done to cor-

lation results for some aggregation processes: Brownian coaguld€Ctly Predict those exponents. ,

tion, continuum regimésquaresg = 1.51); Brownian coagulation, Many of the processes in Table | satisfy the convergence
free-molecule regimécircles,a=1.59): and droplet coalescence in condition but some do ndthey are denoted by *). Even in

a convective clouddiamonds,a=1.99). Straight lines are guides these cases, numerical simulations of the aggregation process
to the eye. One observes rather good potential laws along all therovide distributions that can be well approximated by po-
size spectrum with exponents in good agreement with expressiotential laws with the exponents predicted by solutibn For

(5)— see Table I. At very small sizes, the slope is slightly higherexemple, for Brownian coagulation in a free molecule re-
than the theoretical prediction and for sizes approaching the criticajime, «=1.6 and forb(i,j)~(i +]), one hasx~2 (see Fig.
massm* over which clusters are removed, the slope decreases a bil); both cases fall near the limit of the convergence condi-
reaching values smaller than the theoretical ones. The latter behation. For b(i ,j)~(i2+j2), however, the distribution is no

ior is more accused in the last two cases where the convergen¢gnger a straight line in a log-log plot.

condition (6) is not fulfilled. The values of the exponents given
above are obtained from the regression in the interval between

B. Fractal aggregates
=5 andm*/10. ggreg

In the cases dealt with in Table I, the aggregates are com-
pact. One may wonder if our central res(dj is also valid if
the aggregates have fractal structure. Vicse&l. performed
numerical simulations of diffusion-limited cluster-cluster ag-

In Table | we apply our result5) to several cases with gregation with injection in steady-stedtE7]. Curiously, al-
special physical interest. Some of them are related to aerostiiough many scaling relations are discussed, nothing is said
coagulation in the atmosphere, mainly, collection by gravita-about the size-distribution plots, which clearly display scal-
tional settling and coagulation in shear flow. The first pro-ing laws. For uniform diffusion constants, i.e., independent
cess providest=13/6, very close to 2. The second one is in of size and a maximum cluster size, the exponent obtained is
the limit of condition (6); however, numerical simulations about 1.2 in one dimension are1.8 in three-dimensional
show an approximately potential law with exponent 2, assimulations, independently of the injection rafggs. 2 and
predicted by expressiofb). A third one, Brownian coagula- 11 of Ref.[17], respectively. For constant elimination rates,
tion in a continuum regime, although maybe too simple tothe exponent is alse-2 in three dimension before decaying,
account for aggregation processes in the atmosphere since possibly in an exponential way.

Ill. APPLICATIONS

A. Compact aggregates

TABLE I. Coagulation kernels for several aggregation processes and their corresponding coeffients
text). The * denotes that the convergence conditiénis not satisfied though numerical simulations show
that the size-distribution exponeatobtained through Eq5) is reasonably valid.

Procesg26] b(i,j)~ B v a
Brownian coagulation, continuum regime i {3 T (V341 0 1/3 32
Brownian coagulation, free-molecule regime i YY1+ 3)2 1/6 2/3 19/12*
Sintering-controlled catalyst aging i2G+j23 213 2/3 11/6

Collection by differential gravitational settling i3 1—min(i?%~23,i-2%23%] 4/3 2/3 13/6

Coagulation in shear flow FENEOE 1 1 2%
Condensation polymerization, branched chains i+3)(j+2) 2 1 5/2
Droplet coalescence in a convective cloud i+() 1 1 2%
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In order to predict the exponent in this case, one takes these general analysis is that the main coagulation mecha-
the coagulation kernel for constant diffusivity, nisms in atmospheric aerosols lead to potential size distribu-
. D . 1D tions with exponent close to 2, in good agreement with ob-

b(i,J)~(Di+Dp(Ri+R;)~ (" +]7) servational data, and thus shedding some light to this long-

with D the fractal dimension of the aggregates, which hast@nding question. Another interesting application is to

been shown numerically and experimentally tolbe1.75 ~ animal group size distributions where a plausible Brownian

in diffusion-limited CCA[11,17]. Then,8=y=1/D, so that Kernel yields a potentlfal distribution vy|th exponent 1.5, in

Eq. (6) is satisfied andv=1.79, in excellent agreement with agreement to observations for free swimming tuna fish; it is,

the simulations. Let us mention that our approach is alsélowever, too high for some other animal groups possibly
valid for reaction-limited CCA provided the appropriate ker- because the effective dimension of these systems are smaller

nel b(i,j) is used. than the critical one so that a mean-field description is not
adequate. Finally, we have seen that our results are in good

IV. CONCLUSIONS accord with simulations of coagulation of fractal aggregates.

In summary, we have seen that, in steady conditions, ag-
gregation with injection should be added to the list of generic
mechanisms leading to potential size distributions. The suf-
ficient condition for this to happen and the exponent of the Fruitful discussions with J. Bafaluy and financial support
scaling law have been obtained. One important application afinder Grant No. BFM2000-0351-C03-01 are acknowledged.
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