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Scaling in steady-state aggregation with injection

J. Camacho
Departamento de Fı´sica (Fı́sica Estadı´stica), Edifici C, Universitat Auto`noma de Barcelona, 08193 Barcelona, Spain

~Received 29 September 2000; published 28 March 2001!

A mean-field approach for steady-state aggregation with injection is presented. It is shown that for a wide
variety of aggregation processes the resulting steady-size distribution obeys a power lawN(m);m2a with
a5(31b)/2 andb the degree of homogeneity of the coagulation kernel. The general conditions for this to
happen are obtained. Some applications are studied. In particular, it predicts a potential behavior for coagula-
tion in atmospheric aerosols with exponenta'2, in agreement with observations. The theoretical results also
agree with some animal group-size distributions and with numerical simulations in fractal aggregates.
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I. INTRODUCTION

Power-law distributions are widely observed in natu
and social systems@1#. Understanding the origin of this
abundance is a question of great interest that can pro
valuable information about the origins of complexity. Th
question has deserved the attention of many researchers
ing the last decades and several mechanisms have bee
ported to provide scaling laws such as intermittency@2#, co-
herent noise @3#, self-organized criticality @4#, or
multiplicative processes arising from systems with intera
ing units with complex internal structure@5#.

The type of processes we are dealing with in this pa
belongs to the general class of cluster-cluster aggrega
~CCA! where clusters as well as single particles diffuse a
eventually get stick when they meet. These processes
widespread in physical and biological systems such as,
instance, coagulation of colloids and aerosols@6#, polymer-
ization @7#, cluster formation of galaxies@8#, red-blood-cell
aggregation@9#, or plankton ecology@10#. Much work has
been done in the study of these aggregation processes.
cally, it has been addressed to two areas: the structure o
aggregates, which in many cases are fractals@11,12# and the
kinetics of aggregation, experimentally and theoretically,
ther by calculating the explicit time-dependent distributi
functions or mostly its scaling behavior both analytically a
through numerical simulations@12,13#.

Although many of these works correspond to nonstati
ary situations, stationary ones have also been extensi
considered. On one hand, steady aggregation plus brea
the so-called reversible aggregation, has been studied
means of numerical simulations and theoretical analy
@14,15# showing that for many coagulation and fragmen
tion kernels, the size distribution of clusters obeys a pow
law. In stationary aggregation with injection and sinks, so
scaling laws relating the time to reach the stationary s
and the total number of clusters have been derived theo
cally @16# and confirmed by numerical simulations@17#.
With respect to the steady-size distribution, however,
theoretical results have focused in uniform coagulation k
nels, either considering spatial correlations or by us
mean-field approaches@18#, and kernels of the typeb( i , j )
; i m j n1 i n j m @19,20#. However, most physically relevan
ones are more complex such as, for instance,b( i , j );( i 21/3
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1 j 21/3)( i 1/31 j 1/3) for Brownian coagulation in a continuum
regime@21#.

Let us stress that stationary aggregation with inject
bears a great fundamental importance since if these distr
tions are typically scaling laws, as some particular cases h
shown @18,19#, we would be dealing with a very genera
mechanism generating power-law distributions and it sho
be added to the ones listed above. In fact, these proce
bear some resemblance with the ones leading to s
organized criticality: in both the cases, the system is set
from equilibrium by an injection mechanism; in ours, how
ever, the dynamics lead the system to a stable nonequ
rium state and not to an unstable one.

Stationary coagulation with injection is also interesti
for practical purposes and is expected to play a relevant
in ecological and social systems. Let us mention some
amples where the steady-state coagulation plus injection
apply. One of special importance is the study of atmosph
aerosols: particles are continuously generated by natura
artificial means~like smokes ejected by cars, industries etc!,
coagulate and big particles leave the system through s
mentation. A long standing problem is why size-distributi
measurements provide potential laws witha'2 in continen-
tal air and urban polluted air@22# and also, in the study o
stirred tank reactors for aerosols, used for modeling chem
reactors in industry~in this case, large particles are allowe
to flow out from the chamber!. Recently, a similar steady
aggregation dynamics has been successfully applied to
description of the size distribution in plankton@10#, and has
also been introduced in the study of animal group-size d
tributions @23#. The three-dimensional turbulence has a
been suggested to have a deep relation to the steady sta
aggregation with injection@18#.

By using a mean-field approach, we find in this paper
conditions for steady aggregation with injection to yie
power-law distributions for general homogeneous coagu
tion kernels and show that, if satisfied, the correspond
scaling exponent isa5(31b)/2 with b the homogeneity
degree of the kernel. Since the critical dimension for the
processes seems to bedc52 @17,24#, the results of our analy-
sis may have a broad applicability.

The plan of the paper is as follows. In Sec. II the mea
field approach is shown, and Section III presents some
plications.
©2001 The American Physical Society12-1
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II. MEAN-FIELD APPROACH

In order to evaluate the steady distribution function of
aggregation process with sources and sinks, one shoul
principle, solve the Smoluchowski equation for coagulat
in the steady state@25#,

05ak1
1

2 (
i 1 j 5k

bi j NiNj2Nk(
j

bk jNj2ckNk ,

k51,2, . . . , ~1!

whereNk denotes the number of clusters ofk particles,ak is
the injection rate ofk clusters,bi j the coagulation kernel, an
ck the removal probability of a cluster of sizek. In the cases
analytically solved, the sink termck often leads to an expo
nential decay at largek after a potential dependence
smaller ones@19,23#; it is also seen that the exponent in th
potential subrange does not depend onck . In what follows,
we will consider either that only clusters of size bigger th
a critical one are eliminated or that no sink term exist. In
presence of more complicatedck , we expect an exponentia
decay superimposed to the solutions found in its abse
For simplicity, we assume a monodisperse source of sin
particles.

Solving the Smoluchowski equation is not easy, and
attempts to do it have only succeded for particular coag
tion kernels@19#. Instead, we take a different point of vie
and consider a continuum version of the aggregation pro
in which clusters grow when they meet smaller ones a
‘‘die’’ when the cluster they meet is a greater one. Bo
approaches should agree for large cluster sizesk. With this
viewpoint, one may write the following balance equation u
der stationary situations:

d~Nṁ!

dm
52Npm for m.m0 , ~2!

N(m) being the continuous-size distribution,m0 the mass of
single particles, andṁ and pm the growth and death rate
due to coagulation, respectively~the generalization to non
stationary situations and the inclusion of sink and sou
terms is trivial!. At m5m0, one must add a source term
Eq. ~2!. The latter rates are expressed by

ṁ5E
m0

m

dm1b~m,m1!N~m1!m1 ,pm

5E
m

m*
dm1b~m,m1!N~m1!

with m* being either the critical cluster mass over whi
clusters are removed or infinity if there are no sinks.

Let us consider that the coagulation kernel is a homo
neous function of degreeb, i.e., b(l i ,l j )5lbb( i , j ), as
corresponds to most physical situations@19#, and search for
solutions of Eq.~2! of the typeN(m)5Cm2a with C a nor-
malization factor. Straightforward calculations give
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ṁ.Cm22a1bE
0

1

dxb~1,x!x12a for m@m0 , ~3!

pm.Cm12a1bE
1

`

dxb~1,x!x2a for m!m* . ~4!

The introduction of Eqs.~3! and ~4! into Eq. ~2! leads, after
some direct calculations, to the following equation fora:

~222a1b!E
1

`

dyb~1,y!ya2b2352E
1

`

dxb~1,x!x2a

whose solution is simply

a5
31b

2
~5!

provided integral*1
`dxb(1,x)x2a does exist. Ifb(1,x) is a

continuous function andb(1,x);xg for x→`, as usually
happens in physical situations, the convergence condition
writes asa.11g or

g,
11b

2
. ~6!

Therefore, in aggregation processes with injection
single particles, if Eq.~6! satisfies, at stationary situations th
size distribution is a power law with an exponent given
Eq. ~5!. One can confirm the validity of this result by com
parison with observational data, numerical simulations, a
solutions of the Smoluchowski equation.

We have performed numerical simulations to test the s
range for which the scaling solution holds. In the simu
tions, we use cellular automata that emulate the aggrega
process. Since they do not include space, they directly su
mean-field solutions. The results are obtained by adding
solutions every given time interval once the steady state
been reached. In Fig. 1, the size distributions for some
gregation processes are displayed. One observes that th
sults fit well with the potential laws from small to big size

On the other hand, by solving the Smoluchowski equat
for the kernelb( i , j ); i m j n1 i n j m, Hayakawa found a power
law distribution for asymptotic largem ~or k) with exponent
a5(31m1n)/2, under conditionum2nu,1 @19#. These
are precisely the results predicted by Eqs.~5! and~6!. Let us
point out that the present method, apart from being ma
ematically simpler than Hayakawa’s, does not need to d
separately with gelating and nongelating cases. Obviou
for the constant kernel, Eq.~5! suppliesa53/2, as obtained
through different methods.

Finally, let us mention that Eq.~5! is also found by
Cueille and Sire@20#. Curiously, in their derivation, com-
pletely different from ours, they do not include any restr
tion in the values of the parametersg and b for the power
solution to hold, restrictions that do appear in Hayakaw
deduction.
2-2
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III. APPLICATIONS

A. Compact aggregates

In Table I we apply our result~5! to several cases with
special physical interest. Some of them are related to aer
coagulation in the atmosphere, mainly, collection by grav
tional settling and coagulation in shear flow. The first p
cess providesa513/6, very close to 2. The second one is
the limit of condition ~6!; however, numerical simulation
show an approximately potential law with exponent 2,
predicted by expression~5!. A third one, Brownian coagula
tion in a continuum regime, although maybe too simple
account for aggregation processes in the atmosphere sinc

FIG. 1. Mass distribution of clustersN(m) versus mass. Simu
lation results for some aggregation processes: Brownian coag
tion, continuum regime~squares,a51.51); Brownian coagulation
free-molecule regime~circles,a51.59); and droplet coalescence
a convective cloud~diamonds,a51.99). Straight lines are guide
to the eye. One observes rather good potential laws along al
size spectrum with exponents in good agreement with expres
~5!– see Table I. At very small sizes, the slope is slightly high
than the theoretical prediction and for sizes approaching the cri
massm* over which clusters are removed, the slope decreases a
reaching values smaller than the theoretical ones. The latter be
ior is more accused in the last two cases where the converg
condition ~6! is not fulfilled. The values of the exponents give
above are obtained from the regression in the interval betweem
55 andm* /10.
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convection is considered, might also be included; it yields
exponent 1.5, smaller than 2 but close to some atmosph
observations. Therefore, one may conclude that the main
agulation processes in atmospheric aerosols yield pote
laws with exponentsa'2, in good agreement with observa
tional evidence.

The Brownian kernel in a continuum regime may al
give a plausible description of aggregation of some anim
into groups. Observational data for free swimming tuna fi
provide an exponent 1.49 before an exponential de
@23,27#. For sardinellas and African buffalos, the expone
found are, respectively, 0.95 and 1.15@23#, smaller than the
mean-field value 1.5. The reason for this might be, as s
gested by Bonabeauet al. that the aggregation process
these cases takes place in an effective dimension lower
two, below the critical dimension over which the mean-fie
theory gives right results. More work should be done to c
rectly predict those exponents.

Many of the processes in Table I satisfy the converge
condition but some do not~they are denoted by *). Even in
these cases, numerical simulations of the aggregation pro
provide distributions that can be well approximated by p
tential laws with the exponents predicted by solution~5!. For
exemple, for Brownian coagulation in a free molecule
gime,a.1.6 and forb( i , j );( i 1 j ), one hasa'2 ~see Fig.
1!; both cases fall near the limit of the convergence con
tion. For b( i , j );( i 21 j 2), however, the distribution is no
longer a straight line in a log-log plot.

B. Fractal aggregates

In the cases dealt with in Table I, the aggregates are c
pact. One may wonder if our central result~5! is also valid if
the aggregates have fractal structure. Vicseket al.performed
numerical simulations of diffusion-limited cluster-cluster a
gregation with injection in steady-steate@17#. Curiously, al-
though many scaling relations are discussed, nothing is
about the size-distribution plots, which clearly display sc
ing laws. For uniform diffusion constants, i.e., independe
of size and a maximum cluster size, the exponent obtaine
about 1.2 in one dimension and'1.8 in three-dimensiona
simulations, independently of the injection rate~Figs. 2 and
11 of Ref.@17#, respectively!. For constant elimination rates
the exponent is also'2 in three dimension before decayin
possibly in an exponential way.
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TABLE I. Coagulation kernels for several aggregation processes and their corresponding coefficien~see
text!. The * denotes that the convergence condition~6! is not satisfied though numerical simulations sho
that the size-distribution exponenta obtained through Eq.~5! is reasonably valid.

Process@26# b( i , j ); b g a

Brownian coagulation, continuum regime (i 21/31 j 21/3)( i 1/31 j 1/3) 0 1/3 3/2
Brownian coagulation, free-molecule regime (i 211 j 21)1/2( i 1/31 j 1/3)2 1/6 2/3 19/12*
Sintering-controlled catalyst aging (i 2/31 j 2/3) 2/3 2/3 11/6
Collection by differential gravitational settling i 2/3j 2/3@12min(i2/3j 22/3,i 22/3j 2/3)# 4/3 2/3 13/6
Coagulation in shear flow (i 1/31 j 1/3)3 1 1 2*
Condensation polymerization, branched chains (i 12)( j 12) 2 1 5/2
Droplet coalescence in a convective cloud (i 1 j ) 1 1 2*
2-3
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In order to predict the exponenta in this case, one take
the coagulation kernel for constant diffusivity,

b~ i , j !;~Di1D j !~Ri1Rj !;~ i 1/D1 j 1/D!

with D the fractal dimension of the aggregates, which h
been shown numerically and experimentally to beD51.75
in diffusion-limited CCA@11,12#. Then,b5g51/D, so that
Eq. ~6! is satisfied anda51.79, in excellent agreement wit
the simulations. Let us mention that our approach is a
valid for reaction-limited CCA provided the appropriate ke
nel b( i , j ) is used.

IV. CONCLUSIONS

In summary, we have seen that, in steady conditions,
gregation with injection should be added to the list of gene
mechanisms leading to potential size distributions. The s
ficient condition for this to happen and the exponent of
scaling law have been obtained. One important applicatio
,

,
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n-
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these general analysis is that the main coagulation me
nisms in atmospheric aerosols lead to potential size distr
tions with exponent close to 2, in good agreement with o
servational data, and thus shedding some light to this lo
standing question. Another interesting application is
animal group size distributions where a plausible Brown
kernel yields a potential distribution with exponent 1.5,
agreement to observations for free swimming tuna fish; it
however, too high for some other animal groups possi
because the effective dimension of these systems are sm
than the critical one so that a mean-field description is
adequate. Finally, we have seen that our results are in g
accord with simulations of coagulation of fractal aggregat
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